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The influence of an initial adiabatic section on the heat transfer coefficient is studied on the assumption

that the heat transfer law is expressed in the form St = A/Re;™ Pr#. In addition, the temperature dis-
tribution on a thermally insulated wall is obtained when heat transfer occurs over the initial section.

A great deal of attention has recently been given to investigating the influence of upstream conditjons on the de-
velopment of a turbulent boundary layer [1-4].

We shall examine the case of a turbulent boundary layer on a flat plate with an initial thermally insulated section,
when heat transfer at x > x, satisfies the condition ty = const (Fig. la).
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Fig. 1. Plates with initial insulated section (a) and with initial heat transfer
section (b).

The energy equation for the thermal boundary layer, taking into account that the velocity may vary at its outer
edge, is written as:

d I?‘*T*wo] . “

= = §t;. 1
dx w, Zpo WeC po ! @

Equation (1) is similar in form to the energy equation in the presence of a longitudinal pressure gradient. However, a
longitudinal pressure gradient has no appreciable influence on heat transfer [1].

For a turbulent boundary layer
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where Sty is the Stanton number based on the velocity at the edge of the thermal boundary layer, and Re’;x = Wy Oy /v.
Assuming a power-law velocity profile

We = Uy ( 6,/6)1/7 = U ( 8*,*/5**)1/7 , (3)
then
Re"T"l == wo‘c‘z;"/v = (U 3™ V) (5;*/6**)8/7, (4)
From (2), (3), and (4) we obtain
St = a/gpo tot0 =(A/Re""*Pr"") (3/37)", )

4179



where St is the Stanton number based on the free-stream velocity, and Re™ == 443"/v is the Reynolds number based on
the free-stream velocity and momentum thickness. Taking into account that

%]l) — A/Re** 0-25— S, Pros6, (8)
we obtain
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The values 3 and &, are found from solution of the equations

Re'"= (0.016Re, ),

Re}y,= (0.016Rea,)*8.
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Fig. 2. Effect of initial, thermally insulated section on the heat transfer coefficient: a) 1 — according
to (10); 2 — according to (9); b) 1 — experiment [4]; 2 = according to (11).

Finally, the function giving the effect of the initial adiabatic section on the heat transfer coefficient is

¢ (x, Xg) = St/St, =
= [x/(x~—-x0)]°-“4. (9)

It can be seen from Fig. 2a that the calculation based on this equation agrees well with the equation proposed by
Seban, and this gives a good description of the experimental results of Reynolds, Kays, and Kline [3]:

—1/9

St/Sto = [1— (x/x)0-°] ~ (10)

The plate formula (10), obtained using the conservation of heat law with variable velocity at the edge of the ther-
mal boundary layer, coincides with that obtained in [1] for the same case using Prandtl’s hypothesis. We may
write (9) in the form

St =0.029 (upx/v) "2 Pro® [x/(x— x) 1" . (11)

Figure 2b shows calculations according to this formula compared with experimental results for a flat plate under the
condition qy = const [4]. It is known that the heat transfer coefficients for constant heat flux and constant wall temper-
ature are practically the same.
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We shall now examine the case of a turbulent boundary layer on a flat plate with an initial heat transfer section
followed by a thermally insulated section, with heat transfer occurring at x < x, under the condition of constant wall
temperature (Fig. 1b). The temperature of the thermally insulated wall (x > xg) has to be determined.

We will further determine the heat flux ¢y, which must be supplied in the section x >x¢ in order that the wall
temperature for X > xy be equal to the free-stream temperature (Fig. 1b).

The energy equation for an incompressible boundary layer is linear in temperature, and therefore, applying the
method of superposition, we may write an expression for the heat flux [2] as follows:

Gy1 = 8po WoCpo [Sto (o — o) +- (12)
+ Sto@ (x, xo) (fo—two)l.

The same heat flux qyy may, however, be written in another way:

8
Gy = a(to —tagw)-
10 Q‘Q*)-O\LWO—DC 0 W (13)
—_— In this case, using the heat transfer law in the form (2), we
obtain
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Fig. 3. Surface temperature distribution: 1) ; J
= X. 15
theory from (20); 2) experiment from [3]. g Gur d¥ ‘-5 Guwod (1%)
Xo

It is evident that the extension of this condition to finite values of x will not introduce an appreciable error, since
X

g1 is exponential in nature, and there will be a noticeable change of 5 9y dx only for small values of x.

From (15) we find that o
Re;’ = Re;'/8. (16)
In view of this, (15) is transformed to
Gy1 = Agpo UyCpo (fo — tadw) ®”.’/Re*r’;"’ Pre. (1
From (12) and (17), the dimensionless wall temperature is
t l R e m
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0= TadW g (x, x)—11"" (__;g_)'”*‘. (18)
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For a turbulent boundary layer the exponents in the heat transfer law are m = 0.25; n = 0,75, Function ¢(x, Xg) is
taken in the form (9) and Re*T*o and Re*T" are found from the solution of the energy equation in integral form, using
the heat transfer relation in the form (2); they are equal, respectively, to:

- 1 0.8
Rej; = [A(m+ h = RexO] , (19)
0.8
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Rey = | A(m +1) — Re,
| er [(m )r" e]

In accordance with the relation given above for a turbulent boundary layer, (18) may be written as
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Calculations based on (20) and the experimental data of [3] are compared in Fig. 3.
NOTATION

X¢ — length of initial section; ty and t,, - temperature of the gas outside boundary layer and wall temperature;
tady — adiabatic wall temperature; ty, = wall temperature in heat transfer section p; — density of gas outside bound~
ary layer; Cpo ~ specific heat of gas outside boundary layer; o — dynamic viscosity of gas outside boundary layer; Ay —
thermal conductivity of gas outside boundary layer; ug — velocity outside boundary layer; wy — velocity atedge of thermal
boundary layer; % and 3,3, and &"*, 8;*0 — dynamic and thermal boundary layer thicknesses, convection and momentum
thicknesses, and convection thickness for x = xg; Biaxy — dynamic boundary layer thicknesses during development from
points x = 0 and x = Xy, respectively; B;fo — momentum thicknesses during development of (dynamic) boundary layer
from points x = 0 and x = X, respectively; gy, qwo, dwjy — heat fluxes (Fig. 1) o — heat transfer coefficient Ax = x ~Xg;
8= (4, — tad_w)/(to - two)3 Re, = p, tyx/y; Re,, = PouOA"'-"}iM Re™ == pautgt™* /1y Re;‘ = P Uy ?':K/P'e; Re:\; “Po ”o?’*A;/Ho;
Re}:f: Pollgir, /> ReT = pothgdy /ity PT = Cpg tro/dgi St == a/gpy toCpy: Sty < = a/gpsWycpy St — Stanton number on flat plate,
when dynamic and thermal layers start at same point; Cf, — friction coefficient on flat plate; A, m, n — constants in
the heat transfer relation.
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